

Exploration in data mining

Urszula Kużelewska, PhD Bialystok University of Technology

Poland

Bialystok University of Technology

A plan of the lecture

- Introduction to clustering
- Partitioning algorithms
- Hierarchical algorithms
- Algorithms based on density
- Evaluation of clustering results
- Problems occurring in the clustering process
- Application of clustering results

Definition of clustering

Clustering - the process of **extracting knowledge** from a data set, when **no additional information** about it is available about the category assigned to individual sample points.

The purpose of clustering procedure is to divide a set into clusters (disjoint groups) such that each of them contains the most similar data in accordance with the criterion defined *a priori*.

The main purpose of clustering algorithms is to create a **convenient and proper organization (structure) of data**, which consists of separate groups of objects.

The process of identification groups from data is based on the **relations of similarity between the elements of the set**, in such a way that there is a strong similarity within the group, while among the groups is very small.

Experiment

Clustering - various definitions

Examples of clustering applications

Examples of clustering applications

Examples of clustering applications

- Recognition of faces, letters, objects
- Compression of multimedia data
- Detection of anomalies
- Marketing prediction of clients' preferences based on their previous behaviour
- Banking determining the appropriate loan or type of account based on customer's earnings, type and place of work, age, etc.
- Biology DNA matrix analysis
- Web mining creating user profiles based on websites visited by him

Steps of clustering process

Steps of clustering process

Clustering algorithms

- Partitioning algorithms
- Hierarchical algorithms
- Algorithms based on density
- Methods based on a grid generated in multidimensional space
- Methods based on model and evaluation of model's parameters

Partitioning algorithms

Video on Coursera

- 1. Optimisation of criterion function
- 2. Relocation of objects among groups

K-means algorithm (MacQueen'67)

- 1. Choose randomly k points from the set of data
- 2. Evaluate distances of all objects from dataset to every of *k* groups and denote their membership based on the closest distance.
- 3. If none of the points has changed their membership, stop the algorithm.
- 4. Calculate the mean square error of the sum of the distance of objects from the group centers.
- 5. If the calculated error value < determined threshold, stop the algorithm.
- 6. Calculate new cluster centers. Jump to p.2.

K-means algorithm

K-means advantages

- Time complexity O(tKn), where t a number of iteration, K – a number of groups, n – a number of objects
- t,K<<n □ O(n)
- Fast?

- Clusters size?
- Clusters shape?
- Outliers, noise?

K-medoids algorithm (e.g. PAM - Partitioning Around Medoids, Kaufmann&Rousseeuw'87)

As a cluster center is always taken a point **from a dataset**

K-medoid pros&cons

• ?

- Resistant to outliers
- K?
- Fast?
- Time complexity O(n(n-K))!!!!
- Groups of spherical shape and comparable sizes
- Improved implementations:
 - CLARA (Kaufmann&Rousseeuw'90) PAM on samples
 - CLARANS (Ng&Han'94)

Kernel k-means?

Hierarchical algorithms

- Sequential clustering
- Dendrogram formation

1

• Disadvantages: time complexity O(n²), number of groups required, sensitive to outliers and noise

Hierarchical algorithms - formation of a dendrogram

Two ways of dendrogram formation

• Divisive approach

(top-down): starting from all objects in one group, then in every iteration large groups are split

Agglomerative approach

(bottom-up): starting from all objects in a separate group, then in every iteration the groups are joined

Joining of the groups

Various approaches to distance measure: e.g. single-link (hsl) or complete-link (hcl)

	X 1	v2		p1	p2	p3	p4	p5
pl	-1.88	2.05	p1	0	2,0064	5,08	6,938	3,834
p2	-0,71	0,42	p2		0	3,305	4,936	3,456
p3	2,41	-0,67	p3			0	3.18	6.136
p4	1,85	-3,8	p4				0	6,066
p5	-3,69	-1,33	p5					0

• • • • • pl p2 p3 p4 p5

	X1	v2		p1	p2	p3	p4	p5
pl	-1,88	2,05	p1	0	2,0064	5,08	6,938	3,834
p2	-0,71	0,42	p2		0	3,305	4,936	3,456
p3	2,41	-0,67	p3			0	3,18	6,136
p4	1,85 -3.69	-3,8 -1 33	p4				0	6,066
p5	0,00	1,00	p5					0
				pl	• p2	p3]	p4 p	5

					p1	p2	p3	p4	p5
				p1	() 2,0064	5,08	6,938	3,834
hsl	p1,p2	р3	1	p4	p5	0	3,305	4,936	3,456
p1,p2		0	3,305	4,936	3,450	5	0	3,18	6,136
p3			0	3,18	6,13	5		0	6,066
p4				0	6,06	5			0
р5					()			

	X1	x2
pl	-1,88	2,05
p2	-0,71	0,42
p3	2,41	-0,67
p4	1,85	-3,8
р5	-3,69	-1,33

hsl	p1,p2	p3	p4	p5
p1,p2	0	3,305	4,936	3,456
p3		0	3,18	6,136
p4			0	6,066
p5				0

			hsl		p1,p2		p3		p4		p5	
			p1,p2			0	3,	305	4,	936		3,456
hal	n1 n2	n2	n /	n 5				0	3	8,18		6,136
1151	p1,p2	р3	,p4	p.	,					0		6,066
p1,p2		0	3,305		3,456							0
p3,p4			0		6,066							
p5					0							
						Γ						

	X1	x2
pl	-1,88	2,05
p2	-0,71	0,42
pЗ	2,41	-0,67
p4	1,85	-3,8
р5	-3,69	-1,33

hsl	p1,p2	p3,p4	p5
p1,p2	0	3,305	3,456
p3,p4		0	6,066
р5			0

CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling - George Karypis

Algorithms based on density

- The areas of similar density are joined
- E.g. DBSCAN
- Advantages: low time complexity O(nlogn), resistant to outliers and noise, no input parameter related to a number of groups, arbitrary shapes of clusters
- **Disadvantages:** other input parameters: *epsilon*, *minPts*

Algorithm DBSCAN

- *Epsilon* a radius defined neighbourhood of object
- minPts minimal number of points in neighbourhood
- Core object: an object that has at least *minPts* in its neighbourhood
- Border object: an object that has less than *minPts* in its neighbourhood

MinPts = 5 $\varepsilon = 1 \text{ cm}$

Algorithm DBSCAN

- If any object has a core object in its neighbourhood is called as directly reachable by density
- If any object is connected to other object through points directly reachable by density is called as reachable by density
- The objects that are connected with each other and between them is an object reachable by density are called connected by density

Example

- 1. Set minPts=4
- 2. Core points: B, F
- 3. Points directly reachable by density: A (from B), C (from B), G (from F)
- 4. Points reachable by density: A and C
- 5. The points E and A are connected by density through B point

Algorithm DBSCAN

- 1. Set values of parameters epsilon and minPts
- 2. Select an arbitrary point from the dataset
- 3. Identify a set G composed of points reachable by density from the point *p*
 - a. If the point *p* is a core, denote G as a group
 - b. If *p* is a border point, go to the following point
- 4. If there are any unvisited points go to the step 2 <u>Video</u>

M. Ester, H.P. Kriegel, J. Sander, X. Xu, 96

Algorithm DBSCAN - some examples

Algorithm DBSCAN - sensitivity to input parameter's values

Figure 8. DBScan results for DS1 with MinPts at 4 and Eps at (a) 0.5 and (b) 0.4.

Figure 9. DBScan results for DS2 with MinPts at 4 and Eps at (a) 5.0, (b) 3.5, and (c) 3.0.

Evaluation of clustering results

Visual evaluation

A knee-plot approach

- Different values of input parameter + values of evaluation index
- 2. Examples of evaluation indices:
 - a. Root Mean Square Error
 - b. A scattering matrix
- 3. Examples of input parameters:
 - a. A number of clusters
 - b. Radius of neighbourhood
 - c. Top k-closest neighbours

Examples of a knee-plot approach

External measures

Preprocess Classify Cluster Associate Select attributes	Visualize Forecast
Ousterer	
Choose EM -E 100 -N -1 -M 1.0E-6 -5 100	
Cluster mode	Custerer output
🐑 Use training set	0 22 (108) A DO (155)
Supplied test set	4 59 (194)
Percentage solt St. 66	
Decrear to durbers evaluation	Log likelihood: -1.60803
Alexa desc	
Vering class	Class attribute: class
V Store custers for Visualization	Classes to Clusters:
Jonore attributes	0 1 2 3 4 K assigned to cluster
	2B 0 D 22 D Iris-setosa
Start Stop	0 0 27 0 23 Iris-versicolor
Result list (right-click for aptions)	0 35 15 0 0 Iris-virginica
08:59:39 - EM	Cluster D < Iris-setosa
	Cluster 1 < Iris-virginica
	Cluster 2 < Iris-versicolor
	Cluster 4 < No class
L	
	Incorrectly clustered instances : 60.0 40 %

Internal measures

- A level of compactness of the groups
- A level of separability of the groups
- The values are calculated for various values of input parameter
- Maximal or minimal values of the measure indicates optimal value of the input parameter

 $CDbw(nc) = Sep(nc) \cdot Intra_dens(nc), nc > 1$

$$Sep(nc) = \frac{\sum_{i=1}^{nc} \sum_{j=1, i \neq j}^{nc} \min d(clos_rep_i, clos_rep_j)}{1 + Inter_dens(nc)}, nc > 1$$

Separability in CDbw

CDbw - similarity in the group

Examples of optimal clustering evaluation

Algorytm	wskażnik	nc = 2	nc = 3	nc = 4	nc = 5
	Dunn	0.90	4.25	0.22	0.37
k-means	DB	0.21	0.01	0.02	0.02
	SI	0.66	0.92	0.73	0.75
	CDbw	7.38	21.52	1.45	-

Algorytm	wskaźnik	nc = 2	nc = 3	nc = 4	nc = 5
	Dunn	0.98	0.57	0.22	0.22
k-means	DB	0.36	0.23	0.33	0.19
	SI	0.51	0.54	0.34	0.37
	CDbw	3.30	2.07	0.71	-

Examples of optimal clustering evaluation

zbiór	Wskaźniki względne		Wskaźnik zewnętrzny		
danych	DB	Dunn	SI	CDbw	Rand
2norm	0.07	0.26	0.72	37.68	1.0
2norm&Noise (2 grupy)	0.15	0.02	0.60	13.06	0.8
2norm&Noise (3 grupy)	0.14	0.05	0.58	19.01	0.8
4circles	0.15	0.06	0.44	4.55	0.62
circle˚	-	-	-	4.97	0.50
arbitrary	-	-	-	3.88	0.64
arbitrary&Noise (4 grupy)	-	-	-	2.59	0.67
arbitrary&Noise (5 grup)	-	-	-	2.17	0.67
10 dim	0.01	7.83	0.93	421.04	1.0
irysy	0.18	0.07	0.50	11.23	0.87
clouds2	0.26	0.04	0.45	14.79	-

- Real value attributes
- Nominal value attributes
- Binary attributes

Real value attributes:	$\frac{x_i}{x_1}$
 Minkowski motrics 	x_2
	<i>x</i> ₃
Cosine distance	$\frac{x_4}{x_5}$
De evene e e una latione	x_6
 Pearson correlation 	x_7
	x_8
	x_9
	<i>x</i> ₁₀
	x11 T10
$d(x_1, x_2) = 0.12, d(x_6, x_7) = 0.05, d(x_{11}, x_{12}) = 0.03$	x_{12} x_{13}
$d(x_1, x_6) = 0.89, d(x_6, x_{11}) = 1.22, d(x_{11}, x_1) = 0.89$	x ₁₄
Euclidean distance	x_{15}
Euclidean distance	
d(m, m) = 0.00 d(m, m) = 0.00	1/

☆

$$d(x_1, x_2) = 0.99, \quad d(x_6, x_7) = 0.99, \quad d(x_{11}, x_{12}) = 0$$

 $d(x_1, x_6) = 0.73, \quad d(x_6, x_{11}) = 0.05, \quad d(x_{11}, x_1) = 0.$

cosine distance

0.88 2 0.040.87 3 0 0.03 0.85 3 3 0.95 0.14 0.12 1.04 3 0.09 0.94 3 .99 72

ai

0.89

0.85

0.89

0.93

0.9

0.86

0.92

0.9

 C_i

1

2

2

2

2

 a_2

0.93

0.93

0.98

0.94

0.05

0.07

0.2

0.13

Nominal attributes

$$s(x_i, x_j) = \frac{p}{k}$$

Example: x₁: [W Yes Red] x₂: [M Yes Blue] x₃: [W No Red]

$$s(x_1,x_2)=1/3$$

 $s(x_1,x_3)=2/3$
 $s(x_2,x_3)=0$

Binary attributes

🗚 Balanced variables: SPI, Jaccard: unbalanced variables

Selection of attributes

- The purpose:
 - greater separability of groups
 - \circ easier identification of groups
- The techniques:
 - correlation measure
 - PCA

Correlation of attributes

x	age a ₁	nr of childr a ₂	m. status a ₃	Driving license a ₄
1	23	0	nz	n
2	28			n
3	21	0	nz	n
4	56	3		n
5	34	2	Z	t

	a1	a2	a3	a4
a1	-	0,95	0,94	0,06
a2	0,95	-	0,95	0,26
a3	0,94	0,95	-	0,00
a4	0,06	0,26	0,00	-

Selection based on PCA

Preprocess Classify Cluster Ass	pciate Select attributes Visualize Forecast
Attribute Evaluator	
Choose PrincipalCompone	nts -R 0.95 -A 5
Search Method	
Choose Ranker -T -1.7976	31348623157E308 -N -1
Attribute Selection Mode Use full training set Cross-validation Folds Seed Num) Sparkling Start Stop Result list (right-dick for options) 22:33:12 - Ranker + PrincipalCompo 23:50:23 - Ranker + PrincipalCompo	Attribute selection output Eigenvectors V1 V2 V3 V4 0.1478 -0.6599 -0.259 -0.5929 Fortified -0.5333 -0.3505 -0.1362 0.5952 Dry-white -0.5067 -0.0778 0.7806 -0.3551 Sweet-white -0.6128 -0.056 -0.4758 -0.2302 Red 0.248 -0.6577 0.2805 0.3393 Rose Ranked attributes: 0.589 1 -0.613Red-0.533Dry-white-0.507Sweet-white+0.248Rose+0.148Fortified 0.2546 2 -0.66Fortified-0.658Rose-0.351Dry-white-0.078Sweet-white-0.056Red 0.1224 3 0.781Sweet-white-0.476Red+0.281Rose-0.259Fortified-0.136Dry-white 0.0284 4 0.595Dry-white-0.593Fortified-0.355Sweet-white+0.339Rose-0.23Red
	Selected attributes: 1,2,3,4 : 4

Selection based on PCA

Principal components: 1,2

Principal components: 3,4

A.K. Jain: Algorithms for Clustering Data, Prentice Halll, 1988

Initial processing / data cleaning

- Missing values
- Standardization
- normalization

$$X^{\star} = \frac{X - \min(X)}{\max(X) - \min(X)}$$

y=-0.133x+41.09

[56 M 66 ? N] 1-nn: d(x₅,x₆)=min

$$d(x_1, x_2) = \sqrt{(22 - 46)^2 + (0 - 1)^2} = \sqrt{577}$$

$$d(x_1, x_3) = \sqrt{(22 - 41)^2 + (0 - 2)^2} = \sqrt{365}$$

$$d(x_1, x_2) = \sqrt{(0 - 0.65)^2 + (0 - 0.5)^2} = \sqrt{0.67}$$

$$d(x_1, x_3) = \sqrt{(0 - 0.51)^2 + (0 - 1)^2} = \sqrt{1.26}$$

A.K. Jain: Algorithms for Clustering Data, Prentice Halll, 1988

What do you remember?

Algorithm	Category	Cluster shape	Time complexity	Input parameter
Examples of application

- Coffie marketing <u>http://www.focus-balkans.org/res/files/upl</u> <u>oad/file/9%20Cluster_Analysis%20Schaer.p</u> <u>df</u>
- Carrot

http://search.carrot2.org/stable/search

• Web resources optimisation

Thank you for your attention!

Urszula Kużelewska email: u.kuzelewska@pb.edu.pl